## java.lang Math

The class Math contains methods for performing basic numeric operations such as the elementary exponential, logarithm, square root, and trigonometric functions.

Unlike some of the numeric methods of class StrictMath, all implementations of the equivalent functions of class Math are not defined to return the bit-for-bit same results. This relaxation permits better-performing implementations where strict reproducibility is not required.

## Math Class Syntax

public final class Math
extends Object

## Java Math Compatibility

The Math class has been around since Java 1.0 though some of it’s methods were added on the later releases.

## Math Method Usage Examples

The following are the detailed list of Math methods and descriptions. We have also provided links to examples of each method on the list.

Returns the absolute value of a long value.

Modifier and Type Method and Description
static double abs(double a)
Returns the absolute value of a double value.
static float abs(float a)
Returns the absolute value of a float value.
static int abs(int a)
Returns the absolute value of an int value.
static long abs(long a)
static double acos(double a)
Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.
static int addExact(int x, int y)
Returns the sum of its arguments, throwing an exception if the result overflows an int.
static long addExact(long x, long y)
Returns the sum of its arguments, throwing an exception if the result overflows a long.
static double asin(double a)
Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.
static double atan(double a)
Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.
static double atan2(double y, double x)
Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar coordinates (r, theta).
static double cbrt(double a)
Returns the cube root of a double value.
static double ceil(double a)
Returns the smallest (closest to negative infinity) double value that is greater than or equal to the argument and is equal to a mathematical integer.
static double copySign(double magnitude, double sign)
Returns the first floating-point argument with the sign of the second floating-point argument.
static float copySign(float magnitude, float sign)
Returns the first floating-point argument with the sign of the second floating-point argument.
static double cos(double a)
Returns the trigonometric cosine of an angle.
static double cosh(double x)
Returns the hyperbolic cosine of a double value.
static int decrementExact(int a)
Returns the argument decremented by one, throwing an exception if the result overflows an int.
static long decrementExact(long a)
Returns the argument decremented by one, throwing an exception if the result overflows a long.
static double exp(double a)
Returns Euler’s number e raised to the power of a double value.
static double expm1(double x)
Returns ex -1.
static double floor(double a)
Returns the largest (closest to positive infinity) double value that is less than or equal to the argument and is equal to a mathematical integer.
static int floorDiv(int x, int y)
Returns the largest (closest to positive infinity) int value that is less than or equal to the algebraic quotient.
static long floorDiv(long x, long y)
Returns the largest (closest to positive infinity) long value that is less than or equal to the algebraic quotient.
static int floorMod(int x, int y)
Returns the floor modulus of the int arguments.
static long floorMod(long x, long y)
Returns the floor modulus of the long arguments.
static int getExponent(double d)
Returns the unbiased exponent used in the representation of a double.
static int getExponent(float f)
Returns the unbiased exponent used in the representation of a float.
static double hypot(double x, double y)
Returns sqrt(x2 +y2) without intermediate overflow or underflow.
static double IEEEremainder(double f1, double f2)
Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.
static int incrementExact(int a)
Returns the argument incremented by one, throwing an exception if the result overflows an int.
static long incrementExact(long a)
Returns the argument incremented by one, throwing an exception if the result overflows a long.
static double log(double a)
Returns the natural logarithm (base e) of a double value.
static double log10(double a)
Returns the base 10 logarithm of a double value.
static double log1p(double x)
Returns the natural logarithm of the sum of the argument and 1.
static double max(double a, double b)
Returns the greater of two double values.
static float max(float a, float b)
Returns the greater of two float values.
static int max(int a, int b)
Returns the greater of two int values.
static long max(long a, long b)
Returns the greater of two long values.
static double min(double a, double b)
Returns the smaller of two double values.
static float min(float a, float b)
Returns the smaller of two float values.
static int min(int a, int b)
Returns the smaller of two int values.
static long min(long a, long b)
Returns the smaller of two long values.
static int multiplyExact(int x, int y)
Returns the product of the arguments, throwing an exception if the result overflows an int.
static long multiplyExact(long x, long y)
Returns the product of the arguments, throwing an exception if the result overflows a long.
static int negateExact(int a)
Returns the negation of the argument, throwing an exception if the result overflows an int.
static long negateExact(long a)
Returns the negation of the argument, throwing an exception if the result overflows a long.
static double nextAfter(double start, double direction)
Returns the floating-point number adjacent to the first argument in the direction of the second argument.
static float nextAfter(float start, double direction)
Returns the floating-point number adjacent to the first argument in the direction of the second argument.
static double nextDown(double d)
Returns the floating-point value adjacent to d in the direction of negative infinity.
static float nextDown(float f)
Returns the floating-point value adjacent to f in the direction of negative infinity.
static double nextUp(double d)
Returns the floating-point value adjacent to d in the direction of positive infinity.
static float nextUp(float f)
Returns the floating-point value adjacent to f in the direction of positive infinity.
static double pow(double a, double b)
Returns the value of the first argument raised to the power of the second argument.
static double random()
Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.
static double rint(double a)
Returns the double value that is closest in value to the argument and is equal to a mathematical integer.
static long round(double a)
Returns the closest long to the argument, with ties rounding to positive infinity.
static int round(float a)
Returns the closest int to the argument, with ties rounding to positive infinity.
static double scalb(double d, int scaleFactor)
Returns d × 2scaleFactor rounded as if performed by a single correctly rounded floating-point multiply to a member of the double value set.
static float scalb(float f, int scaleFactor)
Returns f × 2scaleFactor rounded as if performed by a single correctly rounded floating-point multiply to a member of the float value set.
static double signum(double d)
Returns the signum function of the argument; zero if the argument is zero, 1.0 if the argument is greater than zero, -1.0 if the argument is less than zero.
static float signum(float f)
Returns the signum function of the argument; zero if the argument is zero, 1.0f if the argument is greater than zero, -1.0f if the argument is less than zero.
static double sin(double a)
Returns the trigonometric sine of an angle.
static double sinh(double x)
Returns the hyperbolic sine of a double value.
static double sqrt(double a)
Returns the correctly rounded positive square root of a double value.
static int subtractExact(int x, int y)
Returns the difference of the arguments, throwing an exception if the result overflows an int.
static long subtractExact(long x, long y)
Returns the difference of the arguments, throwing an exception if the result overflows a long.
static double tan(double a)
Returns the trigonometric tangent of an angle.
static double tanh(double x)
Returns the hyperbolic tangent of a double value.
static double toDegrees(double angrad)
Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
static int toIntExact(long value)
Returns the value of the long argument; throwing an exception if the value overflows an int.
static double toRadians(double angdeg)
Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
static double ulp(double d)
Returns the size of an ulp of the argument.
static float ulp(float f)
Returns the size of an ulp of the argument.